ANGPTL4 induction by prostaglandin E2 under hypoxic conditions promotes colorectal cancer progression.
نویسندگان
چکیده
Prostaglandin E(2) (PGE(2)), the most abundant COX-2-derived prostaglandin found in colorectal cancer, promotes tumor cell proliferation and survival via multiple signaling pathways. However, the role of PGE(2) in tumor hypoxia is not well understood. Here, we show a synergistic effect of PGE(2) and hypoxia on enhancing angiopoietin-like protein 4 (ANGPTL4) expression and that elevation of ANGPTL4 promotes colorectal cancer growth. PGE(2) induces ANGPTL4 expression at both the mRNA and protein levels under hypoxic conditions. Moreover, hypoxia induces one of the PGE(2) receptors, namely EP1. Activation of EP1 enhances ANGPTL4 expression, whereas blockage of EP1 by an antagonist inhibits PGE(2) induction of ANGPTL4 under hypoxic conditions. Importantly, overexpression of ANGPTL4 promotes cell proliferation and tumor growth in vitro and in vivo. In addition, treatment with ANGPTL4 recombinant protein increases colorectal carcinoma cell proliferation through effects on STAT1 signaling. The MAP kinase and Src pathways mediate ANGPTL4-induced STAT1 expression and activation. These results are relevant to human disease because we found that the expression of ANGPTL4 and STAT1 are elevated in 50% of human colorectal cancers tested and there is a positive correlation between COX-2 and ANGPTL4 as well STAT1 expression in colorectal carcinomas. Collectively, these findings suggest that PGE(2) plays an important role in promoting cancer cell proliferation via ANGPTL4 under hypoxic conditions.
منابع مشابه
Microenvironment and Immunology ANGPTL4 Induction by Prostaglandin E2 under Hypoxic Conditions Promotes Colorectal Cancer Progression
Prostaglandin E2 (PGE2), the most abundant COX-2–derived prostaglandin found in colorectal cancer, promotes tumor cell proliferation and survival via multiple signaling pathways. However, the role of PGE2 in tumor hypoxia is not well understood. Here, we show a synergistic effect of PGE2 and hypoxia on enhancing angiopoietin-like protein 4 (ANGPTL4) expression and that elevation of ANGPTL4 prom...
متن کاملRepression of prostaglandin dehydrogenase by epidermal growth factor and snail increases prostaglandin E2 and promotes cancer progression.
Prostaglandin E(2) (PGE(2)), a proinflammatory bioactive lipid, promotes cancer progression by modulating proliferation, apoptosis, and angiogenesis. PGE(2) is a downstream product of cyclooxygenase (COX) and is biochemically inactivated by prostaglandin dehydrogenase (PGDH). In the present study, we investigated the mechanisms by which PGDH is down-regulated in cancer. We show that epidermal g...
متن کاملDirect transcriptional up-regulation of cyclooxygenase-2 by hypoxia-inducible factor (HIF)-1 promotes colorectal tumor cell survival and enhances HIF-1 transcriptional activity during hypoxia.
Cyclooxygenase (COX)-2, the inducible key enzyme for prostanoid biosynthesis, is overexpressed in most colorectal carcinomas and a subset of colorectal adenomas. Genetic, biochemical, and clinical evidence indicates an important role for COX-2 in colorectal tumorigenesis. Although COX-2 can be induced by aberrant growth factor signaling and oncogene activation during colorectal tumorigenesis, t...
متن کاملCancer Prevention Research Regulation of Prostaglandin Transporters in Colorectal Neoplasia
Prostaglandin E2 (PGE2) promotes cancer progression by affecting cell proliferation, apoptosis, angiogenesis, and the immune response. It has been reported that PGE2 is transported or passes through the cell membrane via prostaglandin-specific transporters including the prostaglandin transporter (PGT, an influx transporter) and the multidrug resistance-associated protein 4 (an efflux transporte...
متن کاملProstaglandins induce early growth response 1 transcription factor mediated microsomal prostaglandin E2 synthase up-regulation for colorectal cancer progression
Cyclooxygenase2 (COX2) has been associated with cell growth, invasiveness, tumor progression and metastasis of colorectal carcinomas. However, the downstream prostaglandin (PG)-PG receptor pathway involved in these effects is poorly characterized.We studied the PG-pathway in gene expression databases and we found that PTGS2 (prostaglandin G/H synthase and cyclooxygenase) and PTGES (prostaglandi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Cancer research
دوره 71 22 شماره
صفحات -
تاریخ انتشار 2011